Металлы и человек - Страница 29


К оглавлению

29

Ученые не раз делали беспредельно простой и в то же время чрезвычайно сложный опыт — клали в фарфоровый тигель кусочки железа, ставили его в электрическую печь и начинали нагревать. Проходили минуты, поднималась температура металла, и вдруг — остановка. По-прежнему отсчитывает киловатт-часы электросчетчик — это значит, что тепло по-прежнему поступает в печь. Но стрелка термометра застыла на одном делении и не движется. Проходит минута, вторая… И вдруг стрелка вздрагивает, и возобновляется равномерное повышение температуры, соответствующее течению времени.

И снова остановка… Тепло подводится к металлу, а температура его не повышается. И снова начинается повышение температуры… Опять остановка, равномерный подъем — и еще одна остановка. Последняя — металл плавится.

Эти остановки всегда, когда мы имеем дело с чистым железом, происходят при одних и тех же температурах. Первая остановка при температуре 768 градусов, вторая — при 910 градусах, третья — при 1400 градусах. А при 1539 градусах, мы говорили, железо плавится.

Нагревание напоминает подъем на лестницу, перемежающуюся широкими горизонтальными площадками. Так же, переходами с площадки на площадку, происходит и остывание металла. Что это за площадки?

Ответить на этот вопрос было нелегко. И первым ответил на него человек, который без всяких термометров и электрических счетчиков невооруженным глазом наблюдал остывание стальных болванок в цехе завода. Это великий русский металлург Дмитрий Константинович Чернов. Он заметил эти площадки.

Сегодня ученые глубоко разобрались в этом вопросе. И вот что они рассказывают.

Первая остановка связана с потерей магнитных свойств железа. До 768 градусов оно магнитно, выше — нет. Наоборот, при охлаждении ниже этой температуры железо становится магнитным. При 910 градусах происходит перестройка всей кристаллической решетки железа. Если до этой температуры атомы железа в кристаллах образовывали кубики и занимали свои места в углах этих кубиков и в центрах их — такая кристаллическая решетка называется объемоцентрированной, — то теперь они образуют кубики, атомы в которых находятся в вершинах кубов и в центрах их граней, — так называемую гранецентрированную кристаллическую решетку. Вот на эту перестройку и затрачивается тепло, когда его подводят к металлу, а температура остается постоянной.

В гранецентрированном кубе содержится на пять атомов металла больше, чем в объемоцентрированном, «упаковка» их здесь плотнее. Поэтому железо меняет при переходе через эту температуру свой объем. Изменяются и некоторые другие его свойства.

При температуре 1401 градус снова происходит изменение кристаллической решетки железа. Выше этой температуры она опять становится объемоцентрированной кристаллической решеткой. И такой остается до температуры плавления.

Железо легко образует сплавы почти со всеми металлами, кроме щелочных и щелочноземельных, и отказывается в большинстве случаев сплавляться с серебром, ртутью, галлием, свинцом и висмутом.

Но самым важнейшим из сплавов железа является его сплав с углеродом. Вот он-то и образует стали.

Вот для чего нужна «остановка».

Путеводитель по чугунам и сталям

Как это ни странно на первый взгляд, по-настоящему изучены только те сплавы железа с углеродом, в состав которых входит не больше 6,67 процента углерода. Но вот эти-то сплавы, содержащие от долей процента углерода до шести с лишним его процентов, и составляют все многообразие углеродистых сталей и чугунов, которыми располагает современная техника. Малейшее изменение содержания углерода, мало того — изменение условий, при которых образовался тот или иной сплав, например, быстро он охлаждался или нет, уже изменяют его свойства.

Путем проведения тысяч опытов ученые построили так называемую диаграмму состояния железоуглеродистых сплавов. Выяснилось, что для того, чтобы предвидеть, какими свойствами будет обладать тот или иной сплав, надо знать всю историю его образования — с момента начала застывания и до охлаждения до комнатной температуры, а то и ниже. Вот это и изображает знаменитая диаграмма. Значение ее для черной металлургии не менее, пожалуй, велико, чем значение таблицы Менделеева для химии. Познакомимся же с диаграммой состояния.

Судьбы бесчисленного семейства чугунов и сталей читает металлург по этим линиям.


На нижней линии — ее называют абсциссой — нанесено процентное содержание углерода в железе. Крайняя левая точка соответствует стопроцентному содержанию железа, крайняя правая — 6,67 процента углерода. Это именно то содержание углерода, которое соответствует химическому его соединению с железом. Это соединение химики называют карбидом железа, а металлурги — цементитом. Цементит в чистом виде является чрезвычайно твердым и хрупким веществом. Он легко царапает стекло и имеет нулевую пластичность.

Часть диаграммы состояния сплава железа с углеродом, следующую за 6,67 процента последнего, можно рассматривать как диаграмму состояния сплава цементита с углеродом. Ее исследованиями занимались многие ученые как у нас, так и за границей. Но практического значения эти сплавы не имеют, и мы не будем интересоваться сегодня ими.

На вертикальной линии диаграммы состояния сплавов железа-цементита— так называемой ординате — отмечают температуру. Поле между этими линиями занимают различные состояния сплава.

29