Последней операцией получения чистого глинозема является кальцинация — обезвоживание полученного вещества. Осуществляется она в гигантских — метров в 50–75 длиной и метра 1,5–2 диаметром — барабанных вращающихся печах. В поднятый конец этой печи-трубы вводится гидроокись алюминия. Она медленно передвигается по наклону печи вниз, навстречу жаркому пламени мазутных или газовых горелок. В процессе нагревания и прокаливания до температуры в 1250 градусов большая часть гидроокиси превращается в безводную окись алюминия, тот самый корунд, из которого состоят рубины и топазы.
Безводный глинозем — термически стойкий окисел. Температура его плавления равна 2050 градусам. Не просто получить такую температуру в электролизной ванне. И, вероятно, если бы не нашли обходного способа получения алюминия, кроме прямого электролиза расплавленного глинозема, этот металл и сегодня оставался бы драгоценным.
Но способ был найден. Нашли вещество, в котором глинозем хорошо растворяется, и этот-то раствор и подвергают электролизу.
Это вещество называется криолит.
Криолит также является соединением, содержащим в своем составе алюминий. Кроме этого металла, в нем содержатся еще натрий и фтор. Единственное крупное месторождение этого минерала находится в холодной Гренландии. Его внешний вид символичен: он напоминает лед. Кусок криолита, положенный в стакан с водой, почти невидим. Аборигены Гренландии считали долгое время криолит льдом, спрессованным до такой степени, что его уже нельзя растопить. Впрочем, отдельные куски криолита могут иметь снежно-белый, розоватый или даже черный — в зависимости от примесей — цвет.
Криолит встречается в нашей стране на Урале, но его очень мало. Поэтому и криолит приходится приготовлять искусственно.
Сырьем для производства криолита служит плавиковый шпат. Эта горная порода встречается значительно чаще. В Советском Союзе, в частности, большие запасы плавикового шпата имеются в Забайкалье и Средней Азии. Скажем сразу: получение криолита — не менее сложный и тонкий процесс, чем получение глинозема. Как и тот, он начинается с обогащения и последующего измельчения плавикового шпата, в состав которого входят кальций и фтор.
Размельченный в тонкий порошок плавиковый шпат смешивают в специальных дозаторах с концентрированной серной кислотой, и эту смесь направляют в реакционную печь. Это клепанный из котельного железа, герметически закрытый вращающийся барабан. Смесь шпата и кислоты реагирует в нем при температуре около 130 градусов. В результате реакции получается чрезвычайно ядовитый газ — фтористый водород и гипс. Газ выводится через специальный патрубок и по свинцовым трубам идет на очистку, а гипс шнеки выбрасывают из печи.
После очистки фтористый водород растворяют в воде. Производится это в свинцовых башнях. Фтористая кислота разъедает даже стекло— именно с помощью этого вещества вытравляют на нем надписи и рисунки. Свинец — один из немногих материалов, против которых она бессильна, поэтому из него и делают башни. Растворение фтористого водорода в воде сопровождается выделением тепла, а в результате образуется плавиковая кислота.
Полученную плавиковую кислоту очищают от примесей и производят «варку» криолита. Для этого в нее добавляют ту самую гидроокись алюминия, что была получена при «выкручивании» алюминатных растворов, и соду, В результате ряда последовательных реакций и образуется выпадающий в виде осадка криолит.
Это осуществляется в железных чанах, футерованных угольными плитками и снабженных мешалками. В них непрерывно подают пульпу, содержащую гидроокись алюминия и раствор соды. Тщательно соблюдается необходимая дозировка.
Затем криолитовую пульпу сгущают, отделяют в фильтрах от жидкости твердые частицы криолита, и высушивают их в сушильных барабанах при температуре в 130–140 градусов.
Вот каким сложным путем получается похожий на гренландский нетающий лед искусственный криолит. Это с ним встречается глинозем в электролитической ванне.
Третий участник этой встречи — угольный электрод.
Нехитрая, кажется, вещь эти цилиндрические и прямоугольные угольные плиты, спускающиеся в ванну с криолито-глиноземным расплавом. А и их производство — сложный и деликатный процесс, которым занимаются специальные заводы. Ведь все, что входит в состав электрода, при его сгорании рано или поздно попадает в ванну и загрязняет получаемый металл. Поэтому должны быть очень чистыми исходные материалы. Они должны быть достаточно электропроводными, плотными, иметь значительную механическую прочность.
Не будем детально проходить всю цепочку технологических процессов, ведущих от исходных материалов — антрацита, нефтяного кокса, пекового кокса, каменноугольной смолы и т. д. к готовому электроду. Скажем лишь, что она включает в себя дробление исходных материалов, их прокаливание, размол, классификацию, строгую дозировку и смешивание, прессование и обжиг. И только пройдя все эти операции, приходит электрод в электролизный цех алюминиевого завода.
В настоящее время применяют аноды, самообжигающиеся в процессе работы. Но приготовление углеродистого материала для них — не проще.
В электролизном цехе стоят в ряд, одна рядом с другой огромные ванны. В них под коркой застывшего криолита в криолито-глиноземном расплаве электрический ток буквально по атому отбирает алюминий. Он выделяется на дне ванны. Это дно (оно выложено угольными плитами, в которые вделаны залитые чугуном провода) служит катодом. Спускающиеся сверху угольные электроды являются анодами. На них непрерывно выделяется кислород, и они медленно сгорают.